Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering

Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 3.3 Applications

Problem 1. Compute the following areas:

- i) area limited by the following curves y = x and $y = 2 x^2$;
- ii) area of the region $A = \{(x, y) \in \mathbb{R}^2 : x, y > 0, a^2y \le x^3 \le b^2y, p^2x \le y^3 \le q^2x, \}$, where 0 < a < b y 0 .
- iii) area defined by the curves xy = 4, xy = 8, $xy^3 = 5$ and $xy^3 = 15$.

Solution: *i*) 9/2; *ii*) (b-a)(q-p)/2; *iii*) $2 \log 3$.

Problem 2. Find the volumes of the regions defined by:

- i) $z = x^2 + 3y^2$, $z = 9 x^2$.
- ii) $x^2 + 2y^2 = 2$, z = 0, x + y + 2z = 2.

Solution: i) $9\pi\sqrt{2}/4$; ii) π .

Problem 3. Compute the following volumes:

- i) volume defined by the intersection of the cylinder $x^2 + y^2 \le 4$ and the ball $x^2 + y^2 + z^2 \le 16$;
- ii) volume of the region bounded by the cones $z = 1 \sqrt{x^2 + y^2}$ and $z = -1 + \sqrt{x^2 + y^2}$;
- iii) volume of the region bounded by the paraboloid $z = x^2 + y^2$ and the cylinder $x^2 + y^2 = 4$ with $z \ge 0$;
- iv) volume of the region bounded by $x^2 + y^2 + z^2 \le 2$, $x^2 + y^2 \le z$ and $z \le 6/5$.

Solution: *i*) $32\pi(8-3\sqrt{3})/3$; *ii*) $2\pi/3$; *iii*) 8π ; *iv*) $493\pi/750$.

Problem 4. Compute the volume of the region limited by the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Consider also the particular case a = b = c = r.

Solution: *i*) $4\pi abc/3$; *ii*) $4\pi r^3/3$.

Problem 5. Consider the region S in the plane defined by the curves mentioned below. Compute the mass and center of mass of S assuming that the density is constant:

- i) $y = x^2, x + y = 2$,
- ii) $y + 3 = x^2, x^2 = 5 y$,

- iii) $y = \sin^2 x, y = 0, x \in [0, \pi],$
- iv) $y = \sin x, y = \cos x, x \in [0, \pi/4].$

Solution: *i*) $M = 9\rho/2$; CM = (-1/2, 8/5); *ii*) $M = 64\rho/3$; CM = (0, 1); *iii*) $M = \pi\rho/2$; $CM = (\pi/2, 3/8)$; *iv*) $M = (\sqrt{2} - 1)\rho$; $CM = (\pi(2 + \sqrt{2})/4 - \sqrt{2} - 1, (\sqrt{2} + 1)/4)$.

Problem 6. Compute the mass for the plate corresponding to the region of the first quadrant of the circle $x^2 + y^2 \le 4$, whose density is proportional to the distance to the centre of the circle.

Solution: $M = \frac{4k\pi}{3}$.

Problem 7. Let S be the region of the plane limited by the following curves:

- i) $y = x^2, x + y = 2;$
- ii) $y + 3 = x^2, x^2 = 5 y$.

Compute the mass and the center of mass of S assuming that the density ρ is constant.

Problem 8. Compute the moment of inertia with respect to the vertical axis of the solid

$$V = \left\{ x^2 + y^2 + z^2 \le 4, \ z \ge \sqrt{x^2 + y^2} \right\}$$

(Assume a constant density ρ).

Problem 9. Compute the coordinates of the center of mass of the plate

$$M = \{ (x, y) \in \mathbb{R}^2, \ 1 \le x \le 2, \ 1 \le y \le 3 \}$$

where the density is given by the function f(x, y) = xy.

Solution: (14/9, 13/6).

Problem 10. A metal plate is given by the set of points in the plane

$$P = \{(x, y) \in \mathbb{R}^2, |y| \le x \le 1\}$$

with density $f(x, y) = y^2$. Compute the center of mass and the moments of inertia with respect to both axes.

Solution: $CM = (4/5, 0); I_x = 1/15; I_y = 1/9.$

Problem 11. i) Compute the area of the set $D = \{x = r \cos^3 t, y = r \sin^3 t, 0 \le r \le 1, 0 \le t \le \pi/2\} = \{x^{2/3} + y^{2/3} \le 1, x, y \ge 0\}.$

ii) Compute the coordinates of the center of mass of D assuming constant density.

Solution: *i*) $3\pi/32$; *ii*) $x_{CM} = y_{CM} = 256/(315\pi)$.

Problem 12. The square Q of vertices (0,0), (0,1), (1,0), (1,1) represents a plate of constant density ρ . Compute the moment of inertia around the line x = y.

Solution: I_E = $\int_Q d((x, y), E)^2 \rho \, dx \, dy = \int_0^1 \int_0^1 \frac{(x-y)^2}{2} \rho \, dx \, dy = \frac{\rho}{12}.$

Problem 13. The temperature at the points of the cube $[-1, 1]^3$ is proportional to the square of the distance to the origin.

- i) Compute the mean temperature of the cube.
- ii) At which points does the temperature coincide with the mean temperature?

Solution:

i) The average temperature in the cube will be

$$\frac{\int_W T(x, y, z) \, dx \, dy \, dz}{\int_W \, dx \, dy \, dz} = k.$$

ii) The points of the cube where the temperature coincides with the average are those points that satisfy

$$k(x^{2} + y^{2} + z^{2}) = k \Rightarrow x^{2} + y^{2} + z^{2} = 1,$$

so that they will be the points of the sphere centered at the origin and of radius 1.

Problem 14. Compute the center of mass of a semispherical solid of radius R where the density at a point is given by the square of the distance between this point and the origin.

Solution: (0, 0, 5R/12).

Problem 15. An ice cream consists of a cone with angle α , and a semisphere of radius R. The cone and the ball have constant densities, ρ_c and ρ_h , respectively. Find the ratio ρ_c/ρ_h for which the center of mass of the ice-cream is on the plane separating the cone from the ball.

Solution: $3 \tan^2 \alpha$.